Реакции горения
Горение — быстропротекающая химическая реакция соединения горючих компонентов с кислородом, сопровождающаяся интенсивным выделением теплоты и резким повышением температуры продуктов сгорания. Реакции горения описываются т.н. стехиометрическими уравнениями, характеризующими качественно и количественно вступающие в реакцию и образующиеся в результате ее вещества. Общее уравнение реакции горения любого углеводорода
CmHn + (m + n/4) O2 = mCO2 + (n/2) Н2O + Q (8.1)
где m, n — число атомов углерода и водорода в молекуле; Q — тепловой эффект реакции, или теплота сгорания.
Реакции горения некоторых газов приведены в табл. 8.1. Эти уравнения являются балансовыми, и по ним нельзя судить ни о скорости реакций, ни о механизме химических превращений.
Тепловой эффект (теплотой сгорания) Q — количество теплоты, выделяющееся при полном сгорании 1 кмоля, 1 кг или 1 м3 газа при нормальных физических условиях. Различают высшую Qe и низшую Qн теплоту сгорания: высшая теплота сгорания включает в себя теплоту конденсации водяных паров в процессе горения (в реальности при сжигании газа водяные пары не конденсируются, а удаляются вместе с другими продуктами сгорания). Обычно технические расчеты обычно ведут по низшей теплоте сгорания, без учета теплоты конденсации водяных паров (около 2400 кДж/кг).
КПД, рассчитанный по низшей теплоте сгорания, формально выше, но теплота конденсации водяных паров достаточно велика, и ее использование более чем целесообразно. Подтверждение этому — активное применение в отопительной технике контактных теплообменников, весьма разнообразных по конструкции.
Таблица 8.1. Реакции горения и теплота сгорания сухих газов (при 0°С и 101,3 кПа)
Газ |
Реакция горения |
Теплота сгорания |
|||||
Молярная, кДж/кмоль |
Массовая, кДж/кг |
Объемная, кДж/м3 |
|||||
высшая |
низшая |
высшая |
низшая |
высшая |
низшая |
||
Водород |
И2 + 0,502 = H2O |
286,06 |
242,90 |
141 900 |
120 080 |
12 750 |
10 790 |
Оксид углерода |
C0 + 0,502 = CO2 |
283,17 |
283,17 |
10 090 |
10 090 |
12 640 |
12 640 |
Метан |
CH4 + 2O2 = CO2 + 2H2O |
880,90 |
800,90 |
55 546 |
49 933 |
39 820 |
35 880 |
Этан |
C2H6 + 0,5O2 = 2CO2 + 3H2O |
1560,90 |
1425,70 |
52 019 |
47 415 |
70 310 |
64 360 |
Пропан |
C3H + 5H2O = 3CO2 +4H2O |
2221,40 |
2041,40 |
50 385 |
46 302 |
101 210 |
93 180 |
н-Бутан |
C4H,0 + 6,5O2 = 4CO2 + 5H2O |
2880,40 |
2655,00 |
51 344 |
47 327 |
133800 |
123 570 |
Изобутан |
C4H,0 + 6,5O2 = 4CO2 + 5H2O |
2873,50 |
2648,30 |
51 222 |
47 208 |
132960 |
122780 |
н-Пентан |
C5H,2 + 8O2 = 5CO2 + 6H2O |
3539,10 |
3274,40 |
49 052 |
45 383 |
169270 |
156 630 |
Этилен |
C2H4+3O2=2CO2 + 2H2O |
1412,00 |
1333,50 |
50 341 |
47 540 |
63 039 |
59 532 |
Пропилен |
C3H6 + 4,5O2 = 3CO2 + 3H2O |
2059,50 |
1937,40 |
48 944 |
46 042 |
91 945 |
88 493 |
Бутилен |
C4H + 6O2 = 4CO2 + 4H2O |
2720,00 |
2549,70 |
48 487 |
45 450 |
121 434 |
113 830 |
Для смеси горючих газов высшая (и низшая) теплота сгорания газов определяется по соотношению
Q = r1Q1 + r2Q2 +... + rnQn (8.2)
где r1, r2, ..., rn — объемные (молярные, массовые) доли компонентов, входящих в смесь; Q1, Q2,..., Qn — теплота сгорания компонентов.
Воспользовавшись табл. 8.1, высшую и низшую теплоту сгорания, кДж/м3, сложного газа можно определять по следующим формулам:
QB = 127,5 Н2 + 126,4 СО + 398 СН4 + 703 С2Н6 + 1012 С8Н8 + 1338 C4H10 + 1329 C4H10 + 1693 С5Н12 + + 630 С2Н4 + 919 С3Н6 + 1214 C4H8 (8.3)
QH = 107,9 H2 + 126,4 CO + 358,8 CH4 + 643 C2H6 + 931,8 С8Н8 + 1235 C4H10+ + 1227 C4H10+ 1566 С5Н12 + + 595 С2Н4 + 884 С8Н6+ 1138 C4H8 (8.4)
где H2, CO, CH4 и т. д. — содержание отдельных составляющих в газовом топливе, об. %.
Процесс горения протекает гораздо сложнее, чем по формуле (8.1), так как наряду с разветвлением цепей происходит их обрыв за счет образования промежуточных стабильных соединений, которые при высокой температуре претерпевают дальнейшие преобразования. При достаточной концентрации кислорода образуются конечные продукты: водяной пар Н2О и двуокись углерода СО2. При недостатке окислителя, а также при охлаждении зоны реакции, промежуточные соединения могут стабилизироваться и попадать в окружающую среду.
Интенсивность тепловыделения и рост температуры приводят к увеличению в реагирующей системе активных частиц. Такая взаимосвязь цепного реагирования и температуры, свойственная практически всем процессам горения, привела к введению понятия цепочечно-теплового взрыва — сами химические реакции горения имеют цепной характер, а их ускорение происходит за счет выделения теплоты и роста температуры в реагирующей системе.
Скорость химической реакции в однородной смеси пропорциональна произведению концентраций реагирующих веществ:
w = kС1С2 (8.5)
где С1 и С2 — концентрации реагирующих компонентов, кмоль/м3; к — константа скорости реакции, зависящая от природы реагирующих веществ и температуры.
При сжигании газа концентрации реагирующих веществ можно условно считать неизменными, так как в зоне горения происходит непрерывный приток свежих компонентов однозначного состава.
Константа скорости реакции (по уравнению Аррениуса):
К = К0е-Е/RT (8.6)
где К0 — предэкспоненциальный множитель, принимаемый для биометрических гомогенных смесей, =1,0; Е — энергия активации, кДж/кмоль; R — универсальная газовая постоянная, Дж/ (кг*К); Т — абсолютная температура, К (°С); е — основание натуральных логарифмов.
Предэкспоненциальный множитель К0 можно истолковать как константу, отражающую полноту столкновения молекул, а Е — как минимальную энергию разрыва связей молекул и образования активных частиц, обеспечивающих эффективность столкновений. Для распространенных горючих смесей она укладывается в пределах (80÷150)•103 кДж/кмоль.
Уравнение (8.6) показывает, что скорость химических реакций резко возрастает с увеличением температуры: например, повышение температуры с 500 до 1000 К влечет повышение скорости реакции горения в 2·104÷5•108 раз (в зависимости от энергии активации).
На скорость реакций горения влияет их цепной характер. Первоначалаьно генерируемый реакцией атомы и радикалы вступают в соединения с исходными веществами и между собой, образуя конечные продукты и новые частицы, повторяющие ту же цепь реакций. Нарастающее генерирование таких частиц приводит к «разгону» химических реакций — фактически взрыву всей смеси.
Высокотемпературное горение углеводородов имеет весьма сложный характер и связано с образованием активных частиц в виде атомов и радикалов, а также промежуточных молекулярных соединений. В качестве примера приводятся реакции горения простейшего углеводорода — метана: